How Many Basic Pokemon Should a Deck Have?

By ChallengerG (Cord0wainer@hotmail.com)

 Before I begin, I should mention that this article is probably being sent to the wrong place, as it is more suitable to your Featured Articles section. However, as there is no address given for Featured Articles section, I am sending it to the TCG Strategies section because it does contain an important tip on strategy.

 I really enjoy the Pokemon TCG.  However, I do not enjoy losing a game without even taking a turn.  This was not a likely outcome in the past. 
These days, however, there are several decks, including Ness’s excellent Super Crazy Sneasel (SCS) deck, that can knock out an opponent’s single Pokemon in the 1st turn, even if that Pokemon has 80 or 90 hp.  (With a full bench, a darkness energy, and 4 plus powers, a Team Rocket Meowth has greater than 50% chance of knocking out a 90 hp Pokemon.)   For this reason, one should design decks that do not have very high probability of starting with a single basic Pokemon.  This, of course, leads to the question how many basic Pokemon should a deck have?

 To help answer this question, I calculated the probabilities of getting 0, 1,...,7 basic Pokemon in a 7-card opening hand, given the number of basic Pokemon that are in the 60-card deck.  The results for up to 20 basics in the deck are shown in the Table below:

        Probability for the number of Basic Pokemon in the opening hand
Basics  0       1       2       3       4       5       6       7
in Deck
1       88.33   11.67   0.00    0.00    0.00    0.00    0.00    0.00
2       77.85   20.96   1.19    0.00    0.00    0.00    0.00    0.00
3       68.46   28.19   3.25    0.10    0.00    0.00    0.00    0.00
4       60.05   33.63   5.93    0.38    0.01    0.00    0.00    0.00
5       52.54   37.53   9.01    0.88    0.03    0.00    0.00    0.00
6       45.86   40.12   12.28   1.64    0.10    0.00    0.00    0.00
7       39.91   41.61   15.60   2.65    0.21    0.01    0.00    0.00
8       34.64   42.17   18.84   3.93    0.40    0.02    0.00    0.00
9       29.98   41.97   21.90   5.44    0.68    0.04    0.00    0.00
10      25.86   41.15   24.69   7.16    1.07    0.08    0.00    0.00
11      22.24   39.83   27.16   9.05    1.57    0.14    0.01    0.00
12      19.06   38.13   29.26   11.08   2.22    0.23    0.01    0.00
13      16.28   36.14   30.98   13.21   3.00    0.36    0.02    0.00
14      13.86   33.95   32.30   15.38   3.93    0.54    0.04    0.00
15      11.75   31.63   33.22   17.55   5.02    0.77    0.06    0.00
16      9.92    29.24   33.74   19.68   6.24    1.07    0.09    0.00
17      8.34    26.84   33.90   21.73   7.61    1.45    0.14    0.01
18      6.99    24.45   33.70   23.65   9.10    1.91    0.20    0.01
19      5.82    22.12   33.18   25.41   10.70   2.47    0.29    0.01
20      4.83    19.88   32.37   26.98   12.39   3.13    0.40    0.02

For example, if you have 13 basic Pokemon in your deck, you have a 16% chance of starting with a Mulligan (0 basics), 36% chance of starting with a single basic, 31% of starting with 2, 13% with 3, 3% with 4, and less than 0.5% with more than 4.  The mathematical formula for the probability of getting n basics in a 7-card opening hand out of a 60-card deck that contains b basics is:

P(n)= 7!/[n!*(n-7)!]* Product(i=1 to 7-n) of [1-b/(b/(61-i)] *
     Product(i=1 to n) of [(b+1-i)/54+n-i)]

 Of course, a Mulligan is probably preferable to starting with a single Pokemon.  We can calculate the probabilities of the opening hand once you get at least one basic, and these are given in the table below:


Probability for the number of Basic Pokemon in the opening hand after all Mulligans have been resolved
Basics  1       2       3       4       5       6       7
in Deck
1       100.00  0.00    0.00    0.00    0.00    0.00    0.00
2       94.64   5.36    0.00    0.00    0.00    0.00    0.00
3       89.36   10.31   0.32    0.00    0.00    0.00    0.00
4       84.18   14.85   0.95    0.02    0.00    0.00    0.00
5       79.09   18.98   1.86    0.07    0.00    0.00    0.00
6       74.11   22.69   3.02    0.18    0.00    0.00    0.00
7       69.25   25.97   4.42    0.35    0.01    0.00    0.00
8       64.52   28.83   6.01    0.61    0.03    0.00    0.00
9       59.94   31.27   7.76    0.97    0.06    0.00    0.00
10      55.50   33.30   9.65    1.44    0.11    0.00    0.00
11      51.22   34.92   11.64   2.02    0.18    0.01    0.00
12      47.11   36.15   13.70   2.74    0.29    0.01    0.00
13      43.17   37.01   15.78   3.59    0.43    0.02    0.00
14      39.42   37.49   17.85   4.57    0.62    0.04    0.00
15      35.85   37.64   19.89   5.68    0.87    0.07    0.00
16      32.47   37.46   21.85   6.93    1.19    0.10    0.00
17      29.28   36.98   23.71   8.30    1.58    0.15    0.01
18      26.29   36.23   25.43   9.78    2.05    0.22    0.01
19      23.49   35.23   26.98   11.36   2.62    0.31    0.01
20      20.89   34.01   28.34   13.02   3.29    0.42    0.02

 One can see that unless a deck contains at least 12 basic Pokemon, there is a higher than 50% chance that the opening hand will have only a single basic.  Increasing the number of basics to 16, drops that probability to less than 1/3.  Of course, if you put too many Pokemon in your deck, you will not have enough energies or trainers.  As a compromise, I would choose 14 or 15 basic Pokemon in my deck.  The probability of starting with a single card is less than 40%, and, if you do not run many evolutions, you should have space for sufficient trainer and energy cards.


_________________________________________________________________
Get your FREE download of MSN Explorer at http://explorer.msn.com/intl.asp